近年来,随着复杂系统建模需求的增长,异构图神经网络逐渐成为研究热点。然而,现有方法通常存在固定推理流程和虚假相关性等问题,限制了模型的可解释性和泛化能力。为此,我们提出了一种新颖的异构图学习框架,通过模拟人类感知与决策过程,增强对任务的预测性能与结果解释能力。
核心研究思路
我们提出的方法基于以下关键步骤:
1.语义变量构建:通过图模式与元路径提取出易于人类理解的语义变量,例如论文、作者和会议等。
2.因果关系挖掘:采用结构方程模型,自动发现变量之间的因果关系,并利用学习到的因果关系进行预测。
3.目标任务预测:通过逆推算法,将语义变量的因果关系转化为目标任务的预测结果。
数据集与实验验证
研究在三个公开数据集(DBLP、ACM和IMDB)上进行了验证,这些数据集涵盖学术、社交和电影推荐等多种场景:
DBLP:预测作者的研究领域。
ACM:预测论文的学术类别。
IMDB:预测电影的类型。
通过引入三种偏差(同质性、度分布、特征分布),验证了模型在不同数据分布下的泛化能力。实验表明,提出的模型在所有设置下表现稳定,泛化能力显著优于现有方法。
主要研究成果
1.泛化性:模型在不同偏差条件下保持较高的预测性能,表现出卓越的适应能力。
2.可解释性:通过因果关系图清晰展示变量间的影响逻辑。例如,作者研究领域与发表论文的会议密切相关,模型捕捉到这一直观规律,并验证了因果推理结果与专家经验的一致性。
实际应用前景
该框架在技术挖掘、金融分析、政策评估等领域具有广泛应用潜力。例如,通过因果关系图辅助技术创新决策,或在金融分析中解释影响因素以提升透明度。此外,其高度可解释性为改进模型逻辑、提升可信度提供了可能性。
总结
异构图学习正在为复杂系统建模与分析带来新的可能性。本研究通过结合因果推理技术与异构图神经网络,不仅实现了对复杂任务的准确预测,还增强了对模型推理过程的理解,为人工智能在实际问题中的应用提供了新的视角。
本文基于以下成果写作完成:
Lin, T., Song, K., Jiang, Z., Kang, Y., Yuan, W., Li, X., … & Liu, X. (2024). Towards human-like perception: Learning structural causal model in heterogeneous graph. Information Processing & Management, 61(2), 103600.
APA引用格式: Jiang, Z. (2024, December 14).像人类一样感知:异构图中的结构因果模型学习?. Information Matters, Vol. 4, Issue 12.
-
Dr. Zhuoren Jiang is an Assistant Professor in the Department of Information Resource Management at the School of Public Affairs, Zhejiang University. He has served as a consultant at Alibaba's DAMO Academy, where he contributed to advancing language technology. Currently, he collaborates with Tongyi Lab, focusing on the development of large language models. Dr. Jiang has published over 70 peer-reviewed papers in leading international journals and conferences, including Journal of Informetrics, Journal of the Association for Information Science and Technology, and Information Processing & Management, along with top-tier computer science conferences like SIGIR, WWW, ACL, AAAI, EMNLP, CIKM, and WSDM. He has led multiple research projects funded by esteemed organizations such as the National Natural Science Foundation of China. His contributions have been recognized with several accolades, including the Best Poster Award at the 2013 ACM/IEEE-CS Joint Conference on Digital Libraries and a nomination for Best Short Paper at the 2024 ACM SIGIR Conference. His research interests span computational social science, graph neural networks, and artificial intelligence applications, and he is also involved in various professional organizations, contributing to the advancement of information resource management and AI.
View all posts
Assistant Professor